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ABSTRACT 

It is shown that the two nonessential but removable singularities 
of the plane circular restricted three-body problem can be removed 
simultaneously by a coordinate transformation, which is defined by 
the conformal mapping 

z = -  r + -  4 l (  :.) 
where n is any finite and nonzero real number. Another regularization 
is obtained by the mapping 

1 
2 = p o s  It 6 

which is related to the preceding one by substituting ei' for 5. 

The first mapping gives Birkhoffs transformation when n = 1. But 
when n has the value 2, this transformation is related to a coordinate 
system which has been introduced by G. Lemaitre in the general 
three-body problem. This transformation for n = 2 is also essentially 
equivalent to the regularization introduced by R. F. Arenstorf. The 
second transformation gives Thiele's well-known regularization when 
n takes the value +1. 

1. INTRODUCTION 

The study of the motion of three points with finite 
masses, which attract each other according to the 
Newtonian gravitation law, is equivalent to the resolu- 
tion of a system of second-order differential equations 
where the unknowns are the coordinates of the three 
bodies. But it seems that these differential equations 
have in the denominator the third powers of the dis- 
tances rl, r2, or r3 between the masses. For this reason, 
the equations are always valid except for the singulari- 
ties rl = 0, rz = 0, or r, = 0. In fact, a detailed exam- 

/- 

ination shows that the three-body problem has two kinds 
of singularities with a completely different behavior. The 
first kind of singularity corresponds to the collision 
of two of the three bodies. In this collision, only one of 
the three distances, rl ,  r2, r3, becomes zero. But there is 
one other singularity in the three-body problem, cor- 
responding to the simultaneous collision of the three 
bodies. In this collision the three distances r,, r2, r3 vanish 
together. The three first singularities are called binary 
collisions, while the other is the triple collision. 

1 
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The main difference between the two kinds of singu- 
larities is that the triple collision is an essential 
singularity which cannot be removed by coordinate trans- 
formations, while the binary collisions are removable 
singularities. It is possible to introduce coordinate trans- 
formations such that the binary collision singular points 
disappear. 

The present study is confined to the restricted three- 
body problem which describes the motion of a satellite 
under the action of two masses subject to their Keplerian 
motion around the center of mass. It is supposed here 
that the orbits of the two main masses are circles. In the 
restricted three-body problem, there are not four, but 
only two singularities corresponding to the collision of 
the satellite with one of the two masses. Both singular- 
ities are removable singularities, as has been shown first 
by Thiele’s regularization about 70 years ago (Ref. 1). 

In the existing literature concerning the restricted 
three-body problem, essentially three fundamental regu- 
larizing coordinate systems have been well described in 
the last 70 years. The three different methods can all be 
expressed by conformal mappings. 

Thiele, in his work, introduces two new variables E ,  F ,  
which can be defined from the rectangular coordinates 
X ,  Y by the conformal mapping: 

Z = X + z Y  

O = E + i F  

1 
2 z = --COS e 

This transformation removes the two singularities to- 
gether, and gives remarkably simple forms for the equa- 
tions, or for the Lagrangian and Hamiltonian. The major 
difficulties with Thiele’s coordinates appear when they 
are used for electronic numerical calculations. Several 
trigonometric and other transcendental functions must 
be evaluated, and the calculations become longer, while 
cumulative errors appear very easily. However, Thiele’s 
coordinates have been used during more than 30 
years by the calculators of Stromgren’s group at the 
Copenhagen Observatory in order to find about a hun- 
dred periodic orbits by hand calculations (Ref. 2). 

In 1904, Levi-Civita introduced a new regularization 
of the circular restricted three-body problem (Ref. 3), 

by the parabolic coordinates which can be defined by 
the simple mapping: 

Z = X + i Y  

[ = [ + i ~  

z = 4.2 

The parabolic coordinates have the property that they 
cannot remove the two singularities together, but only 
one, which must be located at the origin of the X ,  Y 
coordinate system. The parabolic coordinates lead to 
simple differential equations, without transcendental 
functions, and for this reason the author used the para- 
bolic coordinates in order to calculate 6,000 orbits with 
a digital electronic computer (Ref. 4). 

In 1915, Rirkhoff defined a new regularization (Ref. 5), 
which can be represented by a conformal mapping: 

z = -  f + -  :( ;) 
The two singularities are removed together, but not 
many authors seem to have used Birkhoffs coordinates. 

Recent work has shown that Birkhoffs coordinates can 
be generalized (Ref. 6, 7) by a conformal mapping: 

z = -  f Z + ,  :( 61) 
These new coordinates are related to works done by 

Lemaitre in the general three-body problem (Ref. 8), 
and for this reason the author has called them Lemaitre’s 
coordinates. This coordinate system gives differential 
equations which are distinguished by the fact that they 
are expressed by purely algebraic forms in the coordi- 
nates and their canonical moments, without square roots 
and transcendental functions. 

It has been shown by Wintner in Ref. 9 that the para- 
bolic regularization cannot be generalized in 

z = 6” 

where n is any integer. Only the value n = 2 is useful 
for the purpose of regularization. In this Report, it is 
shown, however, that Thiele’s coordinates and Birkhoffs 
coordinates can be generalized in 

z=- cosn8 1 

2 
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where n is any nonzero real number. We obtain thus 
two one-parameter families of regularizing coordinate 
transformations. These two families of coordinate trans- 
formations are strongly related. In order to see the 
relationship, it is sufEcient to define a supplementary 
mapping: 

C, = eie 

This Report develops some of the properties of the 
Werent conformal mappings, and gives the Hamiltonian 
function for the restricted three-body problem with the 
regularizing variables. However, once Birkhoffs regular- 
ization is known, then it is obvious that, for any real 
nonzero number n, the generalized transformation also 
gives a regularization, for the simple reason that the 
substitution [+ 5" is regular anywhere (except for n = 0, 
5 = 0 and 5 = co, but the generality is not restricted if 
these special values are excluded). Although the regu- 
larization is made for any real (nonzero) value of the 

parameter n, the case where n is an integer number is 
the most interesting. The conversion from the physical 
coordinates to the regularized coordinates is more simple 
when n is an integer number, because the separation of 
Z (C,) in the real and the imaginary part becomes more 
simple. But in fact, the separation of Z(c) in the real 
part and the imaginary part is not the important question 
for the purpose of numerical computations. In the appli- 
cation of Birkhoff s generalized regularization for the 
numerical integration of the restricted three-body prob- 
lem, one arbitrary determination of C, should be taken 
for starting the integration, and after the integration 
should be transformed back to the unique determination 
of z. 

In Section VII, it is shown that there is, for n = 2, a 
remarkable relation with the general three-body prob- 
lem, by a stereographic projection which has been intro- 
duced by Lemaitre (Ref. 8). 

II. THE GENERAL EQUATIONS FOR THE PLANE CIRCULAR 
RESTRICTED THREE-BODY PROBLEM 

It is well known that the plane circular restricted 
three-body problem can be referred to a u n i f o d y  rotat- 
ing baycentric coordinate system, with a choice of units 
such that the equations of motion are 

The preceding equations of motion are derived from the 
Lagrangian 

1 1 
2 L = - (i' + y")-(yi  - xy') + +' + y') - v 

d2x dy av 
dt ax 

-- dt' 2 - - x = - -  

d'y dx av - + 2 - - y = - -  
dt' dt aY 

where 

V = - (T 1 - B  + E) 
r ;  = ( x  - + y 2  

r; = ( x  - x2)* + y* 

and have the energy, or Jacobi, integral 

1 1 
2 2 E = - ( P  + y") - -(x' + y') + v 

By a simple translation along the x-axis, 

x = x + x,, 

Y = y, 

1 
x o = - - - - p  2 

we can also refer the problem to another rotating coordi- 
nate system X, Y, where the origin is now the middle of 
both main masses 1-p and p, instead of being the center 

3 
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of mass. The distance between the center of mass and 
the middle of the masses is xO, and for this reason the 
corresponding coordinates X ,  Y are called median coordi- 
nates. The Lagrangian can then be written in the form: 

1 
2 L = -(X'* + Y'*) - (X'Y - XY') 

1 
2 + -(XZ + Y?) - v + X O X  

and the corresponding Hamiltonian is 

1 
2 H = - ( p ;  + p i )  + (Yp, - XpJ + v - XOX 

The coordinates of the two main masses are now 
(-1/2, 0) and (+1/2, 0), and the distance r1 and rp  
are given by 

Tq = (x + ;y + Y' 

7; = (x - ;)2 + Y' 

Starting from the coordinate system X, Y, some regulariz- 
ing coordinate systems shall now be introduced by con- 
formal mappings. 

111. GENERAL PROPERTIES O F  THE CONFORMAL M A P P I N G  Z = Z(5) 
APPLIED T O  THE RESTRICTED THREE-BODY PROBLEM 

Let 2 and f: be the complex numbers 

Z = X + i Y  

t = [ + i ,  

Then the analytic function 

z = Z(f:) 

defines a conformal mapping between the two complex 
planes 2 and f:, except for the critical points of the map- 
ping. At the regular points we have the Cauchy-Riemann 
equations 

ax - aY 
at a, 
ax - 2Y 
a, 3.2 

- _ -  

_ _ - _  

and the Jacobian J may be written in one of the following 
forms: 

4 

or 

J = (gy + 

= (gy + 

= (gy + (EJ 
= (!E)* + (E)' 

We shall now apply to the equations of the restricted 
three-body problem a coordinate transformation given by 
the preceding general conformal mapping. The Hamil- 
tonian with the new variables [, 7 and their correspond- 
ing canonical moments p t ,  p,, takes the general form 

where 

1 a ( X 2  + y') A, = + -- 
2 a( 

N v = v - XOX 
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If we now introduce a new independent variable s, 
related with the time variable t by the relation 

I we obtain a new Hamiltonian 

where h is the energy constant corresponding to the 
energy integral H = h. 

The Lagrangian equations of motion may then be 
written with the new variables t, 7, s, in the form 

where 

The convention used here is that a prime always indi- 
cates a derivative with respect to the time t ,  while a dot 
indicates a derivative with respect to the new regularized 
time s. 

IV. THE CONFORMAL M A P P I N G  Z = 114 (5“ +,{-”) 

We suppose that n is a finite and nonzero real number. function [ of the complex variable 2. All the possible 
determinations of [ are complex numbers with constant The definition of the conformal mapping 
moduli 

can be written in the form of a second-degree equation 
in [”, and with arguments, I 

rn - 4 2 8 “ + 1 = O  

I and by solving this equation for ln we find that 

= F (2) = XI + iY, 

Thus, when n is not integer or rational, there are gen- 
erally h;vo infinite sets of points f corresponding to each 
point 2. Each set corresponds to one of the signs of the 
square root. Each of these sets is on a circle with the 
origin of the coordinate system as center. One of these 
circles has a radius greater than 1, while the other has a 
radius smaller than 1. All these facts are obvious conse- 
quences of elementary considerations of the complex 

There is an exception when the square root is zero; 
i.e., when 2 corresponds to one of the singularities 
ml(2 = - 1/2) or m,(Z = + 1/2) of the problem. For 
these two points of the Z-plane there is only one infinite 
set of corresponding points in the [-plane. For both 
singularities, the [-points are on the unit circle. The 
arguments are 2k~/n  for rnz and (2k+ 1) r/n for m,. 

It is easy to describe now the correspondence between 
the 2-plane and the l-plane. To the segments X < - 1/2, 
Y = 0, and 1/2 < X,Y = 0, there are corresponding 
rectilinear segments in the [-plane, all passing by the 

5 
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Z : X + i Y  \ / 

(- + *  0) II (+ +, 0) 

Fig. 1. Conformal mapping Z = 1 /4  ( p  + 1 /PI, 

origin. To the segment - 1/2 < X < + 1/2, Y = 0, 
there are corresponding arcs of circles with unit radius 
in the [-plane. Each half Z-plane corresponds to sectors 
of angle r/n in the [-plane. The correspondence is illus- 
trated in Fig. 1. 

The most relevant fact is the separation of the real 
and imaginary parts of Z. By introducing S according to 

- s = 6 2  + 112 = [ [  = 1 [ I '  
we can write the conformal mapping in the form: 

and S" has the value 

S" = x: + Y; = ( ( 2  + 72)" 

We can now write 

x = -  (S" + 1)X,  
4s" 

y = -  (S" - 1)Y,  
4s" 

and also 

X' + Y' = I[( 16 S" + +) + &(x; - Y?)] 

When n is an integer or rational number, a few simpli- 
fications occur for this conformal mapping. We do not 
consider here the case where n is rational, but not integer. 

6 

When n is integer, the conformal mapping sets up 1- 
to-2n correspondence between the Z-plane and the 
[-plane. There are here also only two exceptions, where 
we have a 1-to-n correspondence at 

ml = (1 - P )  

1 
2 where Z = - - , 

and at 

m, = P 

1 
2 where Z = + -. 

Corresponding to m,, we have = -1; i.e., n points in 
the complex [-plane which are the n nth roots of -1, 
or n points on the unit circle with arguments T (2k + 1)/ 
n for k = 0, 1, ...., n - 1. Corresponding to mz, we have 
["= +l; i.e., the n complex nth roots of the number f l .  
We also have n points on the unit circle which have the 
arguments ?r2k/n, for k=O, 1, .e.., n - 1. Corresponding 
to z = ca, we have f ;  = 0 or ca, but we always restrict 
ourselves to finite points in the z- and [-planes, and to 
nonzero points in the [-plane. When n is integer, XI and 
Y, are both homogeneous polynomials of degree n in 
6 and ?. They may be expressed in terms of the binomial 
coefficients C i  : 
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z = I 4 (c + €-I) (n = I )  z = 4 (5' + c2) ( n  = 2) z = 4 (c3 + €-3) ( n  = 3) 

Fig. 2. Conformal mapping Z = 114 ( p  i- 112;") for n = 1, 2, 3 

For instance, when n = 1, we have 

Xl = t 1  

Yl = T]  

x, z 6 2  - ?2 

Y, = 2 &  

and when n = 2, 

The simple cases n = 1, 2, and 3 are illustrated in Fig. 2. 

In the next developments we shall need the Jacobian 
of our transformation. For this purpose we have 

and, on the other side, 

Thus we arrive at the interesting form for the Jacobian 

We arrive thus at the conclusion that our coordinate 
transformation has only two critical points, corresponding 
to r ,  = 0 and r2 = 0; i.e., the two singularities of the re- 
stricted three-body problem we want to regularize. They 
are also coincident with the two branching points. 

The Jacobian can also be expressed directly as a func- 
tion of 6 and 'I, in the form 

[(S" + 1)' - 4 x ; ]  n' J = -  
16s"" 

because we can verify directly that 

rl = - [ ( S "  + 1) - 2X1] 
4 p -  

4 p  
1 r2 = - [ ( S "  + 1) + ex,] 

and then also that 

1 r1 r2 = - (S" + 1)' - 4 X :  3 16s" 

7 
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x = L ( 1 + + )  4 

= 1( 4 - 3 

V. THE NEW HAMILTONIAN OF THE RESTRICTED 
THREE-BODY PROBLEM 

X = E ( l + & )  4 

2 ( l z )  

y = k  I - -  

We now have enough results to write the Hamiltonian 
of the restricted three-body problem in terms of the new 
variables (, 7. We have the Hamiltonian and the energy 
equation 

I 

1 s  S 
H = -{- r1 r2 2n2 ( P ;  + P i )  - ' (All Pll + All Pll) 

- [(l - p) ~1 + p T ' ]  - x0 Xrl r2 

1 
T2 = - [S + 1 - 2 q  

4d3 

1 
rz  = m[S' - 2 0  + 11 

By the introduction of the new time variable s, 

dt = rl r2 ds 

r2 =z 4s 1 [S' - 2 0  + 11 

1 r1 r2 = - (S' + 1)' - 40'1 
16s' [ 

we obtain the new Hamiltonian 

- s  S H = - .  
Zn' ( P ;  + P i )  - n" (At P t  + All Pll) 

- [(l - p ) r 1  + p T 2 ]  -@ox + h ) T l T '  

and the corresponding canonical equations 

It is essential to see that the preceding Hamiltonian 
and the associated equations of motion have no singular- 
ities. For this reason we say that they are regularized. The 
most interesting particular cases are n = 1 and n = 2. 
The value n = 1 gives Birkhoffs coordinates, and the 
case n = 2 is related to Lemaitre's investigations in 
the field of the general three-body problem. 

Summarized below are the most important relations 
which are sufficient for the numerical integration of the 
equation of motion, in the Lagrangian, as well as in the 
Hamiltonian form, with the special values n = 1 and 2. It 
is remarkable to see that the equations, for n = 2, are 
not only regularized, but also that they do not contain 
square roots to be evaluated. This is true not only for 
n = 2, but for all the even integer values of n. 

The explicit real form for the coordinate transforma- 
tion is given by the relations 

n = 2 n = l  I 

For both the Lagrangian and the Hamiltonian we need 
the explicit expression of I dZ/& 1'. The explicit expres- 
sions in [, 7 are 

n = l  I n = 2  

1 1 dZ 1 -- S' - 2 0  + 13 I lzl =- [(S2 + 1)2 - 40' IgI' - 16S2[ 

8 
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The potential term v can be written in the form 

where all the variable quantities in the right-side mem- 
ber are known functions of t, 7. I 

Finally, for the Hamiltonian, the two quantities 4, A,, 
are given by the relations 

n = l  I n = 2  

The most important partial derivatives which have 
to be used in the equations of motion are 

I 

n = l  

4 = - -g$- [(S' - 1) - 80 t'] 

A - - 4 [(S4 - 1) + 807'1 
- 8S3 

n = 2  

9 
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VI. THE CONFORMAL MAPPING Z = 1/2 COS ne 

The coordinate transformation 2 = 1/4 (p + [-n) takes 
an interesting form if we introduce a new transformation, 
with complex variables 

5 = &e 

or, in the real form, 

6 = e-F cos E 

7 = e-F sin E 

E = arctg 2 
6 

F = - - log, (6' + 7') 
1 
2 

where 0 is the complex variable: 

O = E + i F  

Thus we see that E, F are a special system of polar coor- 
dinates in the (6, v)-plane; e' is a radius, while E is an 
angle. If we limit E to the limits O,%, then we have a 
1-to-1 correspondence between the [-plane and the 
&plane. 

With the introduction of the &variable, the 2-to-t; 
correspondence now becomes a 2-to4 correspondence, 
which can be written in the form 

zz- c o s n ~  

The real form of this conformal mapping is very easy to 
obtain, and is not restricted to the integer values of n, 
because we have 

tn = e-nF (cos nE + i sin n E )  

X, = e-nF cos nE 

Y, = e-nF sin nE 

with Y; + Y: = S" = 

The real form of our mapping thus is 

X = - cos nE ch nF 1 
2 

1 
2 Y = - -sinnEshnF 

The following simple formulas are useful for several 
computations: 

1 nE nF r1 = - (cos nE + ch n F )  = cosz - + sh' - 2 2 2 

1 nE n F  
r2 = - (- cos nE + chnF) = sin' - + sh2 - 2 2 2 

1 
4 

2sin2- = (- rl + rZ + 1) 

rl r2 = - (ch2 nF - cos' n E )  

nE 
2 

nE 
2 2cos2-= (+ T ,  - T' + 1) 

On the other hand, E, F can easily be obtained as func- 
tions of T ~ ,  r2 or X ,  Y by the formulas 

r1 + T ,  = ch nF 

T ,  - r2 = cos nE 

The last two formulas show that the ellipses T ,  + r2 = 
constant in the z-plane correspond to straight lines 
F = constant in the &plane, while the hyperbolas rl - r2 
= constant correspond to the straight lines E = constant. 
When the integer n takes the particular value 1, we have 
Thiele's well-known regularizing coordinates. 

We still have two infinite sets of values E ,  F for each 
pair X ,  Y as far as n is not integer, nor rational. If E,,, F, 
is one couple corresponding to X ,  Y, then all such couples 
are 

( E ,  + 2, F,) and ( - E ,  + 
where f k = 0, 1,2, 

The Jacobians of the transformations are 
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ROTATING RECTANGULAR 
COORDINATES 

z = x + i r  

The Hamiltonian can now be written in the form: 

GENERAL IZ E D  GENERALIZED 
BIRKHOFF COORDINATES T H I E L E  COORDINATES 

4 c * - 
z = (y+ L - " )  ( = E  + 11 5 = 8 = € + I F  

4 

A I  2 n  I I _  

1 2 ( p i  + p i )  - (sh nF ch nF p ,  + sin nE cos nE p F )  

+ 2 (2  xo cos nE - ch nF) - 2 xo rl r2 cos nE ch nF 

A detailed study of the particular case n = 1 has been 
given in Ref. 6. The relationship between Thiele's and 
Birkhoffs generalized coordinates is illustrated in Fig. 3. 

Fig. 3. Relations between rotating rectangular coordinates, Birkhoffs coordinates and 
Thiele's coordinates 

VII. RELATIONS WITH THE GENERAL THREE-BODY PROBLEM (REF. 8-1 0) 

Murnaghan (Ref. 10) obtained symmetric equations 
for the general three-body problem by using the three 
distances r l ,  r2, r ,  as the principal variables. But the bi- 
nary collision singularities were still present in these 
equations. Lemaitre (Ref. 8) removed all three singular- 
ities together by introducing three new variables q l ,  qzr q3, 
instead of the distances rl, r2, r3, as follows: 

2 q :  = (-rl + r2 + r3) 

2 q;  = (+ rl - r2 + r3)  

2 q ;  = ( f  rl + r2 - r3)  

Lemaitre also defined 

In this way, we can write 

Lemaitre also proposed to make a stereographic projec- 
tion in the three-dimensional space q l ,  q2, q3 of the point 
( q J q ,  q2 /q ,  q 3 / q )  into the plane ql ,  q2 from the South 
Pole (0, 0, -1). The coordinates of the projection point 
in the ql ,  q2 plane are then 

2 q 2  = (+ rl + r2 + r3) = 2 (4:  + q', + q i )  

11 
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and we have also the reciprocal relations 

.% 
q1 = q ( m )  

q 2  = q(&) 

It is interesting now to see how this formulation be- 
haves when applied to the circular restricted three-body 
problem. In this problem we have at each instant r3 = 1. 

The preceding relations thus give 

q; + q; = 1 

q2 - q; = 1 

and we see that the circular restricted three-body prob- 
lem is represented in the (q l ,  q2, q,)-space by a vertical 
cylinder with the qs-axis as the symmetry axis and with 
the radius + 1. 

We shall now see what the relation is between the 
coordinates X, Y of the satellite in the rectangular Car- 
tesian coordinate system and the stereographic projection 
t, 7 of the corresponding point of the cylinder. We have 
seen that 

or that 

12 

11 

These last two relations give X and Y as functions of 
4, 41, 92, 93: 

Y = 29 q1 q2 93 

or as functions of [,q: 

D 
4s2 x = --(1 + S2) 

Y = -(1 67 - 9) 2s2 

where D = t2 - 72, and S = t2 + $. 

The last two relations may now be written in the com- 
plex form 

Z = X + i Y  

t = t + i q  

and we see the identity of Lemaitre's coordinates and the 
generalized Birkhoff coordinates, where the integer n 
takes the value 2. 

We can also establish other relationships between the 
generalized Thiele coordinates E ,  F and q,  ql, q2, q3; 
for instance, 

nE q1 = sin- 2 

nE q2 = cos- 2 

n F  93 = sh- 2 

nF 
2 q = ch- 

These relations show that the curves E = constant are 
vertical straight lines on the cylinder, and that the curves 
F = constant are the latitude circles on the same cyl- 
inder in the (ql, q2, q3)-space. 
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VIII. CONCLUSIONS I 

This Report gives a synthesis of a few important regu- 
larizations of the plane circular restricted three-body 
problem. The regularizations which have been given by 
Thiele, Birkhoff, Lemaitre, and Arenstorf are described in 
a unified form, by using conformal mappings. However, 
Levi-Civita’s regularization is not included, and many 
other regularizing coordinates could be introduced, for 
instance, with canonical transformations. 

All the regularizing conformal mappings that have been 
described have the common property that they have a 
critical point which is at the same time a branch point, 
corresponding to the regularized singularity of the three- 
body problem. 

The Jacobian of the transformation has in all the regu- 

1. J = A (t, 7) r,, with A(& 7) # 0 for r, = 0 

2. J = A (&7) rz, with A(& 7) # 0 for r, = 0 

3. J = A ( 6 , ~ )  r, r,, with A(& 7) # 0 for rl rz = 0 

They correspond respectively to the three situations : 

larizations one of the three following forms: 

1. The collision r1 = 0 is regularized only. 

2. The collision r, = 0 is regularized only. 

3. Both collisions r1 = 0 and r2 = 0 are regularized 
simultaneously. 
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